首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4987篇
  免费   1042篇
  国内免费   1662篇
测绘学   58篇
大气科学   2625篇
地球物理   1697篇
地质学   1563篇
海洋学   344篇
天文学   689篇
综合类   111篇
自然地理   604篇
  2024年   16篇
  2023年   79篇
  2022年   121篇
  2021年   183篇
  2020年   213篇
  2019年   233篇
  2018年   208篇
  2017年   233篇
  2016年   224篇
  2015年   257篇
  2014年   296篇
  2013年   517篇
  2012年   286篇
  2011年   371篇
  2010年   328篇
  2009年   422篇
  2008年   451篇
  2007年   459篇
  2006年   408篇
  2005年   376篇
  2004年   285篇
  2003年   230篇
  2002年   204篇
  2001年   163篇
  2000年   178篇
  1999年   167篇
  1998年   150篇
  1997年   114篇
  1996年   76篇
  1995年   97篇
  1994年   75篇
  1993年   59篇
  1992年   37篇
  1991年   27篇
  1990年   22篇
  1989年   22篇
  1988年   29篇
  1987年   13篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   8篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1954年   1篇
排序方式: 共有7691条查询结果,搜索用时 15 毫秒
971.
在干旱少雨的山区开展小流域的暴雨山洪预报预警关键技术研究,对防灾减灾意义重大。2018年7月31日新疆哈密北部山区出现特大暴雨,发生罕见的山洪灾害,致使射月沟流域水库漫坝溃口,下游受灾严重。射月沟流域气象观测站点少且缺乏水文监测资料,为客观定量分析射月沟流域大暴雨面雨量、形成的洪水汇水量以及致灾水库过程。通过采用空间插值法和多源融合逐时降水资料(CMPAS)计算了射月沟水库上游面雨量并进行检验分析。根据不同面雨量驱动Floodarea模型得出射月沟水库上游累计汇水量,结果表明:多源融合降水产品估算所得最大洪峰流量和累计汇水量与水利部门事后调查数据较吻合,最大洪峰量为1 756 m3·s-1,精确性达到调查值的95%,射月沟水库上游暴雨山洪总量为2.64×107 m3,远超该水库的防洪库容和溢洪道承载能力。  相似文献   
972.
本文以深圳公明水库6个中小型土石坝为试验区,利用10景1 m分辨率升降轨X波段TerraSAR影像和坝体附近连续气象站的降雨量数据,研究了坝体表面相干性的时序变化与雷达本地入射角及降雨的关系。试验结果表明,混凝土面板和草坡平均相干性均会随本地入射角增加而减小,同时,草坡表面平均相干性在有微小降雨的情况下就会快速下降0.1~0.2,差分干涉图的噪声增大;混凝土面板对微小的降雨敏感度小,但是在暴雨情况下将导致其表面完全失相干。上述结果表明,针对中小土石坝坡体变形监测应当顾及坝体的坡度及入射角选择合适的雷达成像参数,同时应充分利用降雨资料评估干涉图失相干情况,剔除噪声数据。  相似文献   
973.
The Impact of the Indian Ocean Dipole(IOD) and the El Ni?o Southern Oscillation(ENSO) event for Indonesian rainfall has been investigated for the period from 1950 to 2011. Inter-annual change of IOD and ENSO indices are used to investigate their relationship with Indonesian rainfall. By using the wavelet transform method, we found a positive significant correlation between IOD and Indonesian rainfall on the time scale of nearly 2.5–4 years.Furthermore, the positive significant correlation between ENSO(sea surface temperature anomaly at Ni?o3.4 area indices) and Indonesian rainfall exists for shorter than 2 years and between 5.5 to 6.5-year time scales.  相似文献   
974.
Forest ecohydrological feedbacks complicate the threshold behaviour of stormflow response to precipitation or wetting conditions on a long-term scale (e.g. several years). In this study, the threshold behaviours in an evergreen-deciduous mixed forested headwater catchment in southern China were examined during 2009–2015, when damaged vegetation was recovering after the great 2008 Chinese ice and snowstorm. The non-uniqueness of the thresholds and the slow and rapid responses of stormflow at the outlet of the catchment in different hydro-climate datasets with different maximum values of gross precipitation (P) and sums of precipitation and antecedent soil moisture index (P + ASI) were assessed. The thresholds of P and P + ASI required to trigger stormflows (i.e. ‘generation thresholds’) and the transition from slow to rapid responses of stormflow (i.e. ‘rise thresholds’) were compared both seasonally and annually. The results indicated significant differences in the analysed datasets, highlighting the need to compare thresholds with care to avoid misinterpretation. Seasonal variations in threshold behaviours in the catchment suggested that vegetation canopy interception contributed to higher rise thresholds, and wetter conditions resulted in higher runoff sensitivity to precipitation during the growing and rainy seasons. Furthermore, the generation thresholds were higher in the dormant season, possibly due to drier soil moisture conditions in the near-channel areas. During the vegetation recovery period, the annual generation thresholds increased, however the rise thresholds did not exhibit a similar trend. The rapid stormflow response above the threshold decreased, possibly due to transpiration and interception of the recovered vegetation. However, the slow stormflow response to small rainfall events below the thresholds was higher in wetter years but lower in drier years, suggesting that the total water input dominated the stormflow response during small rainfall events. In conclusion, the seasonal and annual variations in threshold behaviours highlight that vegetation recovery and hydro-climatic conditions had a notable impact on the stormflow response.  相似文献   
975.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   
976.
Yang  Chongyao  Huang  Yongmei  Li  Engui  Li  Zeqing 《地理学报(英文版)》2019,29(9):1527-1547
Journal of Geographical Sciences - Rainfall interception is of great significance to the fully utilization of rainfall in water limited areas. Until now, studies on rainfall partitioning process of...  相似文献   
977.
中国物理海洋学研究70年:发展历程、学术成就概览   总被引:2,自引:2,他引:0  
本文概略评述新中国成立70年来物理海洋学各分支研究领域的发展历程和若干学术成就。中国物理海洋学研究起步于海浪、潮汐、近海环流与水团,以及以风暴潮为主的海洋气象灾害的研究。随着国力的增强,研究领域不断拓展,涌现了大量具有广泛影响力的研究成果,其中包括:提出了被国际广泛采用的“普遍风浪谱”和“涌浪谱”,发展了第三代海浪数值模式;提出了“准调和分析方法”和“潮汐潮流永久预报”等潮汐潮流的分析和预报方法;发现并命名了“棉兰老潜流”,揭示了东海黑潮的多核结构及其多尺度变异机理等,系统描述了太平洋西边界流系;提出了印度尼西亚贯穿流的南海分支(或称南海贯穿流);不断完善了中国近海陆架环流系统,在南海环流、黑潮及其分支、台湾暖流、闽浙沿岸流、黄海冷水团环流、黄海暖流、渤海环流,以及陆架波方面均取得了深刻的认识;从大气桥和海洋桥两个方面对太平洋–印度洋–大西洋洋际相互作用进行了系统的总结;发展了浅海水团的研究方法,基本摸清了中国近海水团的分布和消长特征与机制,在大洋和极地水团分布及运动研究方面也做出了重要贡献;阐明了南海中尺度涡的宏观特征和生成机制,揭示了中尺度涡的三维结构,定量评估了其全球物质与能量输运能力;基本摸清了中国近海海洋锋的空间分布和季节变化特征,提出了地形、正压不稳定和斜压不稳定等锋面动力学机制;构建了“南海内波潜标观测网”,实现了对内波生成–演变–消亡全过程机理的系统认识;发展了湍流的剪切不稳定理论,提出了海流“边缘不稳定”的概念,开发了海洋湍流模式,提出了湍流混合参数化的新方法等;在海洋内部混合机制和能量来源方面取得了新的认识,并阐述了混合对海洋深层环流、营养物质输运等过程的影响;研发了全球浪–潮–流耦合模式,推出一系列海洋与气候模式;发展了可同化主要海洋观测数据的海洋数据同化系统和用于ENSO预报的耦合同化系统;建立了达到国际水准的非地转(水槽/水池)和地转(旋转平台)物理模 型实验平台;发展了ENSO预报的误差分析方法,建立了海洋和气候系统年代际变化的理论体系,揭示了中深层海洋对全球气候变化的响应;初步建成了中国近海海洋观测网;持续开展南北极调查研究;建立了台风、风暴潮、巨浪和海啸的业务化预报系统,为中国气象减灾提供保障;突破了国外的海洋技术封锁,研发了万米水深的深水水听器和海洋光学特性系列测量仪器;建立了溢油、危险化学品漂移扩散等预测模型,为伴随海洋资源开发所带来的风险事故的应急处理和预警预报提供科学支撑。文中引用的大量学术成果文献(每位第一作者优选不超过3篇)显示,经过70年的发展,中国物理海洋学研究培养了一支实力雄厚的科研队伍,这是最宝贵的成果。这支队伍必将成为中国物理海洋学研究攀登新高峰的主力军。  相似文献   
978.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   
979.
To compare the impacts of river discharge on the surface water quality of the Xiangjiang River in China, 12 surface water quality parameters recorded at 31 sampling sites from January 1998 to December 2008 along the river and its main tributaries were analyzed. Significantly higher concentrations of total nitrogen, ammoniacal nitrogen, and total phosphorus, and biochemical oxygen demand were observed during low‐flow periods than during high‐flow periods, implying a higher risk to local residents drinking untreated water during low‐flow periods. Pollution indexes, including the inorganic pollution index and integrated pollution index (IPI), were negatively related to impervious surface area (ISA) and cropland area (CLA) when ISA (CLA) was less than 160 (3000) km2. However, the relationship was positive when ISA (CLA) was larger than 160 (3000) km2, which provided a reasonable explanation for the observed spatial patterns of water quality. Distinct increasing temporal trends for two kinds of pollution indexes were also found. The annual ISA was significantly related to the rapid degradation of water quality from 1998 to 2008, with correlation coefficient (r) values of 0.816 (p = 0.002) and 0.711 (p = 0.014) for the organic pollution index (OPI) and IPI, respectively. However, annual rainfall was negatively correlated with the two indexes with r values of 0.785 (p = 0.002) and 0.448 (p = 0.093) for OPI and IPI, respectively. Our study highlights that decision makers should be more aware of recent increases in the pollution of the Xiangjiang River, especially at downriver sites and during low‐flow periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
980.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号